For more information see Chapter 8 in Huntington-Klein (2021).
Differences
e.g.: Signaling model
gof_omit <- "Adj|IC|Log|Pseudo|RMSE"
stars <- c('*' = .1, '**' = .05, '***' = .01)
msummary(list(lm1, lm2), stars = stars,
gof_omit = gof_omit, output = "markdown")
(1) | (2) | |
---|---|---|
(Intercept) | 2.976*** | 0.036 |
(0.408) | (0.310) | |
CG | 0.081 | 0.130** |
(0.073) | (0.052) | |
TI | 10.433*** | |
(0.344) | ||
Num.Obs. | 1000 | 1000 |
R2 | 0.001 | 0.480 |
Note: ^^ * p < 0.1, ** p < 0.05, *** p < 0.01
Definition
Effects that are the same for every industry, year, firm, or individual can be adjusted for by using fixed effects.
Benefits
We do not need to measure the specific variables and can just use indicators variables for each category (e.g. for each different industry).
See more in chapter 16 of Huntington-Klein (2021)
Nind <- 20
N <- 5000
di <- tibble(
ind_number = 1:Nind,
ind_CG = rnorm(Nind, 0, 1),
ind_performance = rnorm(Nind, 0, 1)
)
ds <- tibble(
ind_number = sample(1:Nind, N, replace = TRUE)) %>%
left_join(
di, by = "ind_number") %>%
mutate(
CG = rnorm(N, .5 + ind_CG, .2),
Performance = rnorm(N, 0 * CG + ind_performance, 1)
)
(1) | (2) | (3) | |
---|---|---|---|
(Intercept) | 0.490*** | 1.054*** | |
(0.019) | (0.080) | ||
CG | -0.076*** | 0.030 | 0.030 |
(0.018) | (0.071) | (0.061) | |
factor(ind_number)2 | 0.207** | ||
(0.097) | |||
factor(ind_number)3 | -0.490*** | ||
(0.090) | |||
factor(ind_number)4 | -0.372** | ||
(0.161) | |||
factor(ind_number)5 | -0.410*** | ||
(0.099) | |||
factor(ind_number)6 | -1.907*** | ||
(0.169) | |||
factor(ind_number)7 | -0.083 | ||
(0.134) | |||
factor(ind_number)8 | -1.191*** | ||
(0.178) | |||
factor(ind_number)9 | -0.935*** | ||
(0.148) | |||
factor(ind_number)10 | -1.712*** | ||
(0.087) | |||
factor(ind_number)11 | -1.162*** | ||
(0.122) | |||
factor(ind_number)12 | -1.118*** | ||
(0.090) | |||
factor(ind_number)13 | 0.765*** | ||
(0.091) | |||
factor(ind_number)14 | -0.564*** | ||
(0.104) | |||
factor(ind_number)15 | 0.730*** | ||
(0.129) | |||
factor(ind_number)16 | 0.689*** | ||
(0.158) | |||
factor(ind_number)17 | -2.056*** | ||
(0.098) | |||
factor(ind_number)18 | -0.503*** | ||
(0.091) | |||
factor(ind_number)19 | -1.907*** | ||
(0.093) | |||
factor(ind_number)20 | 0.608*** | ||
(0.086) | |||
Num.Obs. | 5000 | 5000 | 5000 |
R2 | 0.003 | 0.443 | 0.443 |
R2 Within | 0.000 | ||
Std.Errors | by: ind_number | ||
FE: ind_number | X |
Note: ^^ * p < 0.1, ** p < 0.05, *** p < 0.01
Nind <- 20
N <- 5000
correl <- -0.5
di <- tibble(
ind_number = 1:Nind,
ind_CG = rnorm(Nind, 0, 1)) %>%
mutate(
ind_performance = sqrt(1 - correl^2) * rnorm(Nind, 0, 1) + correl * ind_CG)
ds <- tibble(
ind_number = sample(1:Nind, N, replace = TRUE)) %>%
left_join(
di, by = "ind_number") %>%
mutate(
CG = rnorm(N, .5 + ind_CG, .2),
Performance = rnorm(N, 0 * CG + ind_performance, 1)
)
load(here("data", "booth_yamamura.Rdata"))
table <- as_tibble(table) %>%
select(p_id, women_dat, time, ltime, mix_ra, course,
race_id, yrmt_locid)
table_clean <- filter(table, complete.cases(table)) %>%
select(ltime, women_dat, mix_ra, course, p_id, race_id,
yrmt_locid)
ltime_reg <- feols(ltime ~ women_dat : mix_ra + mix_ra
| course + p_id + yrmt_locid,
cluster = "race_id",
data = table_clean)
msummary(ltime_reg, gof_omit = gof_omit, stars = stars)
(1) | |
---|---|
mix_ra | −0.002*** |
(0.000) | |
women_dat × mix_ra | 0.007*** |
(0.001) | |
Num.Obs. | 142346 |
R2 | 0.361 |
R2 Within | 0.001 |
Std.Errors | by: race_id |
FE: course | X |
FE: p_id | X |
FE: yrmt_locid | X |
* p < 0.1, ** p < 0.05, *** p < 0.01 |
Warning
Equilibrium models are very good at incorporating these effects!
lm1 <- lm(acc_profit ~ corp_gov, data = filter(d, survival == 1))
lm2 <- lm(acc_profit ~ corp_gov * survival, data = d)
msummary(list(lm1, lm2), gof_omit = gof_omit, stars = stars, output = "markdown")
(1) | (2) | |
---|---|---|
(Intercept) | 3.518*** | -0.549*** |
(0.115) | (0.043) | |
corp_gov | -0.137 | 0.606*** |
(0.095) | (0.045) | |
survival | 4.067*** | |
(0.135) | ||
corp_gov × survival | -0.743*** | |
(0.115) | ||
Num.Obs. | 853 | 5000 |
R2 | 0.002 | 0.262 |
Note: ^^ * p < 0.1, ** p < 0.05, *** p < 0.01